Formal Proofs for Undergraduates

Flávio L. C. de Moura¹

Departamento de Ciência da Computação Universidade de Brasília

Seminário Permanente "Lógica no Avião"

April 17, 2017

Why should Computer Scientists/Mathematicians study (Computational) Logic?

- Therac-25
- Pentium FDIV
- Ariane 5

Formal Verification in CS

- There is an explosion of interest in logic with the necessity to prove programs correct
- Nowadays correctness is required not only for critical systems
- The use of proof assistants for formal verification is becoming a standard technology in computer science

Formal Verification in Mathematics

- Computers are more and more indispensable for checking large proofs
 - Kepler's conjecture (1611)
 - The Flyspeck project 2003-2014
 - Four color theorem (1852)
 - Formalized in Coq by Georges Gonthier (2005)
 - The Feit-Thompson Theorem (Odd-Order Theorem) (1963)
 - Formalized in Coq by Georges Gonthier (2012)

Computational Logic

- Our goal:
 - Provide evidence of applications of logic to interesting problems in both Computer Science and Mathematics
 - Logic as the cornerstone of several applications in Computer Science
- Our approach:
 - Teach logic with focus on deduction:
 - Natural Deduction
 - Sequent calculus
 - Computer-assisted proofs

Course Structure

- Induction principles (weak/incomplete, strong/complete, structural)
- Propositional Logic
 - Natural Deduction
 - Intuitionistic and Classical Logics
 - Correctness and Completeness of Classical Logic
- Predicate Logic
 - Natural deduction (ND)
 - Sequent calculus (SC)
 - Intuitionistic and Classical Logics
 - Equivalence between ND and SC
 - Correctness and Completeness of Classical Predicate Logic
- Formalization project in PVS
 - Correctness of algorithms
 - GCD
 - Sorting algorithms
 - Rewriting Theory

Natural Deduction (Intuitionistic Logic)

introduction rules		elimination	rules	
$rac{arphi}{arphi\wedge\psi}$ (\wedge_i)	$rac{arphi \wedge \psi}{arphi}$ (\lambde_e)			
		$[\varphi]^u$	$[\psi]^{v}$	
$\frac{arphi}{arphi \lor \psi} \ \ (\lor_i)$	$\varphi \vee \psi$; ; x	; ;	(∨e) u, v
$[\varphi]^u$				
$\frac{\vdots}{\psi} \qquad (\rightarrow_i)u$		$\frac{\varphi \varphi \rightarrow \psi}{\psi}$	· (→ _e)	
$[\varphi]^u$				
$ \begin{array}{c} \vdots \\ \frac{\perp}{\neg \varphi} \ (\neg_i) \ u \end{array} $		$\frac{\varphi \neg \varphi}{\bot}$	(¬ _e)	
		$\frac{\perp}{\varphi}$ (\perp	e)	

Natural Deduction (Intuitionistic Logic)

introduction rules

elimination rules

$$\frac{\varphi[x/x_0]}{\forall_x \varphi} \ (\forall_i)$$

$$\frac{\forall_x \varphi}{\varphi[x/t]} \ (\forall_e)$$

where x_0 cannot occur free in any open assumption.

$$\frac{\varphi[x/t]}{\exists_x \varphi} \ (\exists_i)$$

$$\frac{[\varphi[x/x_0]]^u}{\vdots} \\
\frac{\exists_x \varphi}{\chi} \qquad \qquad (\exists_e) \ u$$

where x_0 cannot occur free in any open assumption on the right and in χ .

Natural Deduction (Classical Logic)

 Classical logic can be obtained, from intuitionistic logic, by adding one of the following rules:

Natural Deduction

Example (
$$\vdash \varphi \lor \neg \varphi$$
)
$$\frac{\frac{[\varphi]^{\mathsf{v}}}{\varphi \lor \neg \varphi} (\lor_{i})}{\frac{\bot}{\neg \varphi} (\lnot_{e})} (\lnot_{e})$$

$$\frac{\varphi \lor \neg \varphi}{} (\lor_{i}) (\lnot_{e}) (\lor_{i})$$

$$\frac{\bot}{\varphi \lor \neg \varphi} (\lor_{i}) (\lnot_{e})$$

$$\frac{\bot}{\varphi \lor \neg \varphi} (\mathsf{PBC})\mathbf{u}$$

Contextualized example

Example

Prove that there exists irrational numbers x and y such x^y is rational.

Proof.

We consider 2 cases:

- If $\sqrt{2}^{\sqrt{2}}$ is rational then take $x = y = \sqrt{2}$ and we are done.
- 2 If $\sqrt{2}^{\sqrt{2}}$ is not rational, i.e., if $\sqrt{2}^{\sqrt{2}}$ is irrational then take $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$, and we are done since

$$(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2}\cdot\sqrt{2}} = (\sqrt{2})^2 = 2.$$

Contextualized example in Natural Deduction

$$\nabla: \frac{\frac{\neg R(\sqrt{2}) \neg R(\sqrt{2})}{\neg R(\sqrt{2}) \land \neg R(\sqrt{2})}}{\frac{\neg R(\sqrt{2}) \land \neg R(\sqrt{2}) \land \neg R(\sqrt{2}) \land R(\sqrt{2}^{\sqrt{2}})}{\exists x \exists y (\neg R(x) \land \neg R(y) \land R(x^y))}}} (\land_i) \frac{\neg R(\sqrt{2}) \land \neg R(\sqrt{2}) \land R(\sqrt{2}^{\sqrt{2}})}{(\exists_i)^2} \frac{\neg R(\sqrt{2}) \land R(y) \land R(x^y))}{(\exists_i)^2} (\land_i) \frac{\neg R(\sqrt{2})^2}{\neg R(\sqrt{2}) \land \neg R(\sqrt{2}) \land R((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})}}{(\land_i) \land \neg R(\sqrt{2}) \land R((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})}} (\land_i) \frac{\neg R(\sqrt{2}^{\sqrt{2}}) \land \neg R(\sqrt{2}) \land R((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})}{(\exists_i)^2} \frac{(\land_i) \land \neg R(y) \land \neg R(y) \land R(x^y))}{(\exists_i)^2} \nabla (\lor_e) a_1, a_2} \frac{(\lor_e) a_1, a_2}{(\lor_e) a_1, a_2}$$

Sequent Calculus

Left Rules	Right Rules
$ \begin{array}{c} Axioms: \\ \Gamma, \varphi \Rightarrow \varphi, \Delta \ \ (Ax) \end{array} $	$\bot, \Gamma \Rightarrow \Delta \ (\mathrm{L}_\bot)$
$\frac{\begin{array}{c} \text{Structural Rules:} \\ \Gamma \Rightarrow \Delta \\ \hline \varphi, \Gamma \Rightarrow \Delta \end{array} \text{ (LWeakening)}$	$\frac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\varphi} \ \ (\text{RWeakening})$
$\frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ \ \text{(LContraction)}$	$\frac{\Gamma\Rightarrow\Delta,\varphi,\varphi}{\Gamma\Rightarrow\Delta,\varphi} \ \ (\text{RContraction})$
$\frac{ \begin{array}{c} \text{Logical Rules:} \\ \varphi_{i \in \{1,2\}}, \Gamma \Rightarrow \Delta \\ \hline \varphi_{1} \wedge \varphi_{2}, \Gamma \Rightarrow \Delta \end{array} (L_{\wedge})$	$\frac{\Gamma \Rightarrow \Delta, \varphi \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \wedge \psi} (R_{\wedge})$
$\frac{\varphi, \Gamma \Rightarrow \Delta \ \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} \ (L_{\lor})$	$\frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_{1} \vee \varphi_{2}} (\mathbf{R}_{\vee})$
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\to})$	$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \to \psi} (R_{\to})$
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\forall})$	$\frac{\Gamma\Rightarrow\Delta,\varphi[x/y]}{\Gamma\Rightarrow\Delta,\forall_x\varphi}\ (\mathrm{R}_\forall), y\not\in FV(\Gamma,\Delta)$
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_{x} \varphi, \Gamma \Rightarrow \Delta} \ (L_{\exists}), y \notin FV(\Gamma, \Delta)$	$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} \ (R_{\exists})$

$$\frac{\Gamma\Rightarrow\Delta,\varphi\quad\varphi,\Gamma'\Rightarrow\Delta'}{\Gamma\Gamma'\Rightarrow\Delta\Delta'}\ (\mathrm{Cut})$$

Example $(\vdash \varphi \lor (\varphi \to \bot))$

$$\frac{\varphi \Longrightarrow \varphi, \bot}{\Longrightarrow \varphi, (\varphi \to \bot)} \xrightarrow{(R_{\to})} (R_{\vee})$$

$$\frac{\Longrightarrow \varphi \lor (\varphi \to \bot), (\varphi \to \bot)}{\Longrightarrow \varphi \lor (\varphi \to \bot), \varphi \lor (\varphi \to \bot)} \xrightarrow{(R_{\vee})} (RC)$$

$$\Longrightarrow \varphi \lor (\varphi \to \bot)$$

Contextualized example in Sequent Calculus

$$\nabla_{1}: \frac{\Rightarrow \neg R(\sqrt{2})}{\neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2})} (LW) \frac{\Rightarrow R((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})}{\neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow R((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})} (LW)}{\neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow R((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})} (R_{\wedge})} (R_{\wedge})$$

$$\frac{\neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2}) \wedge R(((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}))}{\neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2}^{\sqrt{2}}) \wedge \neg R(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}})} (R_{\exists})^{2}} (R_{\wedge})$$

$$\frac{\Rightarrow \neg R(\sqrt{2})}{\neg R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2})} (LW) \frac{\Rightarrow \neg R(\sqrt{2})}{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2})} (LW) \frac{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow R(\sqrt{2}^{\sqrt{2}})}{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2})} (R_{\wedge}) \frac{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow R(\sqrt{2}^{\sqrt{2}})}{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2}) \wedge \neg R(\sqrt{2}) \wedge R(\sqrt{2}^{\sqrt{2}})} (R_{\Rightarrow})} (R_{\Rightarrow})$$

$$\frac{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \neg R(\sqrt{2}) \wedge \neg R(\sqrt{2}) \wedge \neg R(\sqrt{2}) \wedge R(\sqrt{2}^{\sqrt{2}})}{R(\sqrt{2}^{\sqrt{2}}) \Rightarrow \exists x \exists y (\neg R(x) \wedge \neg R(y) \wedge R(x^{y}))} (R_{\exists})^{2}} (L_{\vee})$$

$$\frac{(LEM) \Rightarrow \neg R(\sqrt{2}^{\sqrt{2}}) \vee R(\sqrt{2}^{\sqrt{2}})}{\Rightarrow \exists x \exists y (\neg R(x) \wedge \neg R(y) \wedge R(x^{y}))} \Rightarrow \exists x \exists y (\neg R(x) \wedge \neg R(y) \wedge R(x^{y}))} (Cut)$$

$$\Rightarrow \exists x \exists y (\neg R(x) \wedge \neg R(y) \wedge R(x^{y}))} (Cut)$$

Equivalence between ND and SC

Theorem (Natural vs deduction à la Gentzen for the classical logic)

One has that for the classical Gentzen and natural calculus

$$\vdash_{\mathsf{G}} \Gamma \Rightarrow \varphi$$
 if and only if $\Gamma \vdash_{\mathsf{N}} \varphi$

- The goal is to use (first-order) logic to solve interesting problems in both Computer Science and Mathematics, but
 - Not by doing logic programming, but
 - Proving properties of algorithms or mathematical theories

Example

Available examples include:

- Formalization of GCD function
- Correctness of sorting algorithms: insertion sort, merge sort, bubble sort, heap sort, etc
- Formalization of rewriting theory: Confluence and Newman's Lemma

Prototype Verfication System - PVS

- Proof assistant developed by SRI International Computer Science Laboratory
 - Based on a higher-order logic
 - Type system based on Church's simple theory of types augmented with subtypes and dependent types
 - Good automation tools (good option as a first proof assistant)
 - Based on sequent calculus:

Proof command	Rules	
(flatten)	$(R_{\lor}),(L_{\land}),(R_{\rightarrow})$	
(split)	$(L_{\vee}), (R_{\wedge}), (L_{\rightarrow})$	
(inst)	$(R_{\forall}), (L_{\exists})$	
(skolem)	$(L_{\forall}), (R_{\exists})$	
(case), (lemma)	(Cut)	
(copy)	(RC), (LC)	
(hide)	(RW), (LW)	

Example (Summing up the natural numbers from 0 to n)

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}, \forall n \in \mathbb{N}$$

• (IB)
$$\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$$

• (IS)
$$\sum_{i=0}^{n} i = n + \sum_{i=0}^{n-1} i \stackrel{IH}{=} n + \frac{(n-1)n}{2} = \frac{2n + (n-1)n}{2} = \frac{n(n+1)}{2}$$

In PVS ...

Example (Summing up the first n odd numbers)

$$\sum_{i=1}^{n} (2i-1) = n^2, \forall n > 0$$

• (IB)
$$\sum_{i=1}^{1} (2i-1) = 1^2$$

• (IS)
$$\sum_{i=1}^{n} (2i-1) = (2n-1) + \sum_{i=1}^{n-1} (2i-1) \stackrel{\text{IH}}{=} (2n-1) + (n-1)^2 = n^2$$

In PVS ...

Example (Correctness of sorting algorithms - Insertion sort)

```
insert (x, 1): RECURSIVE list[T] =
        IF null?(1) THEN cons(x,null)
        ELSIF x \le car(1) THEN cons(x,1)
        ELSE cons(car(1), insert(x,cdr(1)))
ENDIF MEASURE length(1)
insertion sort(1): RECURSIVE list[T] =
IF null?(1) THEN null ELSE
insert(car(l), insertion_sort(cdr(l)))
ENDIF MEASURE length(1)
insertion_sort_works : LEMMA
FORALL (1: list[T]): is_sorted?(insertion_sort(1)) AND
                     permutations(1, insertion_sort(1))
```

In PVS ...

Conclusions

- Computational Logic is intensively used in formal methods
- Computational Logic with focus on deduction is a good way to explore student's knowledge to prove the correctness of his/her programs
- The relevance and importance of formalized proofs are no longer restricted to critical systems
- Proofs of interesting (both simple and complex) mathematical and/or computational properties can be built on a relatively small set of basic deductive rules
- The choice of the proof assistant is not important
 - Coq
 - Isabelle/HOL
 - PVS
 - and many others!

Thank you!

Companion website: logic4CS.cic.unb.br