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Why should Computer Scientists/Mathematicians study

(Computational) Logic?
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Formal Verification in CS

@ There is an explosion of interest in logic with the necessity to prove
programs correct

@ Nowadays correctness is required not only for critical systems

@ The use of proof assistants for formal verification is becoming a
standard technology in computer science
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Formal Verification in Mathematics

@ Computers are more and more indispensable for checking large proofs
o Kepler's conjecture (1611)
@ The Flyspeck project 2003-2014
o Four color theorem (1852)
o Formalized in Coq by Georges Gonthier (2005)
o The Feit-Thompson Theorem (Odd-Order Theorem) (1963)
o Formalized in Coq by Georges Gonthier (2012)
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Computational Logic

@ Our goal:
e Provide evidence of applications of logic to interesting problems in both
Computer Science and Mathematics
o Logic as the cornerstone of several applications in Computer Science

@ Our approach:
e Teach logic with focus on deduction:

o Natural Deduction
@ Sequent calculus
o Computer-assisted proofs
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Course Structure

@ Induction principles (weak/incomplete, strong/complete, structural)
@ Propositional Logic
o Natural Deduction
@ Intuitionistic and Classical Logics
@ Correctness and Completeness of Classical Logic
@ Predicate Logic

o Natural deduction (ND)
o Sequent calculus (SC)

@ Intuitionistic and Classical Logics
o Equivalence between ND and SC
@ Correctness and Completeness of Classical Predicate Logic

@ Formalization project in PVS

Correctness of algorithms
e GCD

e Sorting algorithms

o Rewriting Theory
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Natural Deduction (Intuitionistic Logic)

elimination rules

introduction rules
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Natural Deduction (Intuitionistic Logic)

introduction rules elimination rules
e[x/xo] Vxp
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Natural Deduction (Classical Logic)

o Classical logic can be obtained, from intuitionistic logic, by adding
one of the following rules:
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Natural Deduction

Example (F ¢ V =)
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Contextualized example

Prove that there exists irrational numbers x and y such x” is rational.
Proof.
We consider 2 cases:

QIf \/5\/5 is rational then take x = y = v/2 and we are done.

Q If \/Eﬁ is not rational, i.e., if \/iﬁ is irrational then take x = \/Eﬁ
and y = v/2, and we are done since

(V272 = (V)Y = (V2P = 2.
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Contextualized example in Natural Deduction
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Sequent Calculus

Left Rules Right Rules
Axioms:
M= A (Ax) Lr=a (L))
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Example (F ¢ V (¢ — 1))
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Contextualized example in Sequent Calculus
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Equivalence between ND and SC

Theorem (Natural vs deduction & /a Gentzen for the classical logic)

One has that for the classical Gentzen and natural calculus

Fe I = @ ifandonly if T =y @
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Computer-Assisted Proofs

@ The goal is to use (first-order) logic to solve interesting problems in
both Computer Science and Mathematics, but

e Not by doing logic programming, but
e Proving properties of algorithms or mathematical theories

Example
Available examples include:
@ Formalization of GCD function
@ Correctness of sorting algorithms: insertion sort, merge sort, bubble
sort, heap sort, etc
© Formalization of rewriting theory: Confluence and Newman's Lemma

v
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Prototype Verfication System - PVS

@ Proof assistant developed by SRI International Computer Science
Laboratory
e Based on a higher-order logic
e Type system based on Church's simple theory of types augmented with
subtypes and dependent types
e Good automation tools (good option as a first proof assistant)
o Based on sequent calculus:

Proof command Rules
(flatten) (Rv), (Ln), (R)
(split) (Lv), (Ra), (L-)
(inst) (Ry), (L3)
(skolem) (Lv), (R3)
(case), (lemma) (Cut)
(copy) (RC), (LC)
(hide) (RW), (LW)
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Computer-Assisted Proofs

Example (Summing up the natural numbers from 0 to n)

n
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Computer-Assisted Proofs

Example (Summing up the first n odd numbers)

n
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In PVS ...
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Computer-Assisted Proofs

Example (Correctness of sorting algorithms - Insertion sort)

insert (x, 1): RECURSIVE 1list[T] =
IF null?(1) THEN cons(x,null)
ELSIF x <= car(l) THEN cons(x,1)
ELSE cons(car(l), insert(x,cdr(1)))
ENDIF MEASURE length(1)

insertion_sort(1l): RECURSIVE 1list[T] =
IF null?(1) THEN null ELSE
insert(car(l), insertion_sort(cdr(1l)))
ENDIF MEASURE length(1)

insertion_sort_works : LEMMA
FORALL (1: 1ist[T]): is_sorted?(insertion_sort(1l)) AND
permutations(l, insertion_sort(1l))

In PVS ...
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Conclusions

o Computational Logic is intensively used in formal methods

@ Computational Logic with focus on deduction is a good way to explore
student’s knowledge to prove the correctness of his/her programs

@ The relevance and importance of formalized proofs are no longer
restricted to critical systems

@ Proofs of interesting (both simple and complex) mathematical and/or
computational properties can be built on a relatively small set of basic
deductive rules

@ The choice of the proof assistant is not important

e Coq
o Isabelle/HOL

e PVS

e and many others!
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Thank you!
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Applied Logic
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Companion website: logic4CS.cic.unb.br
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